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Motivation 

• NSF Enhancing Access to the Radio Spectrum (EARS) 
"   Wireless system tests, measurements, and validation 

• Next generation wireless standards use multiple antenna 
systems to increase connectivity and spectral efficiency. 

• Certification of next generation devices is an expensive and 
time consuming process. 
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MIMO OTA Test Methods 
•  MIMO OTA test metrics are being standardized by 

3GPP [1] and CTIA [5] 
•  Large anechoic chamber 

"   DUT is surround by multiple antennas inside the chamber  
"   Multi-cluster 2D measurements on a plane 

•  Small anechoic chamber 
"   Single cluster 3-D measurements indicating DUT’s MIMO 

performance vs. orientation 
"   2-Stage method whereby antennas are measured in the 

chamber and then modeled using a traditional conducted fader 

•  Reverberation chamber 
"   Uniform isotropic (3D) propagation is achieved via reflections 

from metal walls and mechanical stirrers 
"   An external channel emulator is used to provide power delay 

profiles, Doppler and multipath fading 
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Comparison of MIMO-OTA 
Methods 

Full sized anechoic Reverberation chamber Single  
cluster anechoic 

•  Provides 2D performance 
information with 360° multi-
cluster propagation 

•  Requires a lot of space 

•  Less expensive and 
smaller than full sized 
anechoic chamber 

•  No information on where 
the nulls are in the antenna 
field 

•  Provides 3D 
performance 
information 

•  Supports single cluster 
anechoic and 2-stage 
methods 

•  Takes little space 
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Base Station Emulator 

Channel Emulator 

RF Amplifier and  
Calibration 
Subsystem 

Conventional Chamber MIMO-OTA 
Testbed 
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Small Chamber MIMO-OTA Testbed 

Base Station Emulator 

Channel Emulator 

RF Amplifier and  
Calibration 
Subsystem 

Single cluster UMa/UMi models 
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NSF Phase I: Accomplishments 
•  Goal is to analyze accuracy of the 

measurement as a function of angular 
spread of test antennas and number 
of antennas 

•  Developed synthesis algorithm to 
produce Laplacian PAS clusters in the 
test zone based on: 
"   The wavelength used in the 

measurement 
"   Test zone radius 
"   Geometry of chamber and probe 

locations 
"   Shape of probe field 

•  Algorithm calculates error of 
synthesized field vs. theory – 
Reflectivity [8] 

PAS = power angular spread 
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Method – Plane Wave Synthesis 
• Widely used spherical wave 

theory models 3D antenna 
radiation [8] 
•  Plane wave synthesis technique 

is based on spherical wave theory 
[8] and enables synthesis of 
Laplacian PAS cluster field 
•  Team created synthesis algorithm 

to generate Laplacian PAS 

Test 
zone 

probes 
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E-field Over Test Zone  
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Synthesized electric field levels across the test zone agree with the 
theoretical field levels for the desired Laplacian PAS. 

Note: Results are shown for a single instance in time 

Synthesized by Model Theoretical 
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E-field at Max Test Zone Boundary  
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Synthesized electric field levels 
around the circumference of 
the test zone agrees with the 
theoretical field levels for the 
desired Laplacian PAS 

Note: Results are shown for a single instance in time 
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E-field Error vs. Test Zone Radius 
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Reflectivity (error) is < 20dB up to 
0.1m from the center of the test zone 
 
Reflectivity indicates the maximum E-
field error at a given radius relative to 
the peak field over the entire test 
zone plane. 

Note: Results are shown for a single instance in time 
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Simulation Technique 

• Simulate the generation of a target electromagnetic field in 
a test zone with different small anechoic chamber 
dimensions/parameters 
• The target EM field is a Laplacian-distributed Power 

Azimuthal Spectrum with a random phase a each angle 
ej2πβ where β=[0…1]. 
• Monte Carlo simulations to determine the reflectivity in the 

test zone with 95% and 0.25 dB error. 
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Simulation Configuration Diagram 
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Number of 
antennas 

Chamber 
height (m) 

Chamber 
width (m) 

PAS (σ in 
degrees) 

Frequency 
(GHz) 

Test zone 
radius (cm) 

3,4,5,6 1 0.95, 1.5 2 50,70,90 0.7, 2.4, 5.9  10,15,20 

r0

1 n N

W

A
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Simulated Reflectivity vs. # Probes, 
r0, width 
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Freq = 700 MHz 
σ = 70° 
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Summary of Simulation Results 

• More probes required for bigger test zone radius to 
maintain the same accuracy (reflectivity) 
• For a small laptop or pad sized test zone, 20cm test zone 

radius, it appears at least 6 probes are required to keep the 
error (reflectivity) below -15 dB 
• Constraining the range of phase variation of the waveform 

will make this feasible 
• Our effort has created a tool to help us optimize error vs. 

number of probes 
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Computation EM Simulations 

• Field based simulations do not account for reflections and 
near-field effects 
• Create a chamber model to analyze the performance of a 

realistic system 
• Vacuum results are comparable 
• Reflections and NF must be accounted for 

16 
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TABLE II

SIMULATION RESULTS

r0 (m) N Lap. � (deg) Freq Width (m)
Matlab, vacuum HFSS, vacuum HFSS, chamber

mean

ref. (dB)

std. dev.

ref. (dB)

mean

ref. (dB)

std.

dev. ref.

(dB)

mean

ref. (dB)

std. dev.

ref. (dB)

0.1 6 25 700 MHz 2.0 -36.7199 2.4177 -36.2777 2.2741 -21.5130 4.4618

0.1 6 35 700 MHz 2.0 -34.6884 3.5247 -34.2675 3.4109 -22.1664 4.4680

0.1 6 45 700 MHz 2.0 -30.7851 4.5645 -30.3239 4.5859 -22.4231 4.7571

0.1 3 25 2 GHz 0.95 -17.1502 3.6965 -17.3265 3.9848 -15.1249 2.9846

0.1 3 35 2 GHz 0.95 -14.3711 3.6514 -13.4716 3.5810 -12.9946 3.1708

0.1 3 45 2 GHz 0.95 -12.2670 3.5722 -11.3945 3.4241 -11.0843 3.1304

(due to imperfect absorption by the absorbing material) makes matching the synthesized field to the target field

more difficult. The difference between the chamber and vacuum cases is most pronounced at 700 MHz, with a

difference of nearly 10 to 15 dB. This is likely due to the fact that the absorbing material chosen is only rated

for 20 dB of absorption down to 1.3 GHz. This may also be due to the fact that the complex permeability and

permittivity values were extrapolated at this frequency and may not be accurate. The manufacturer was unable to

provide an alternate method of obtaining these values at this frequency. The difference between the chamber and

vacuum cases was less pronounced at 2 GHz, with a difference of approximately 0.3 to 2.2 dB. This is due to the

reduced contribution of reflected energy to the test zone field. This indicates that for 2 GHz, MATLAB simulations

of Laplacian PAS synthesis in a vacuum will be reasonably close to that synthesized in an actual chamber, and can

be used as a predictor of chamber performance.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have demonstrated through simulation that a small anechoic chamber can be successfully utilized

as a MIMO-OTA test chamber for the sufficiently-accurate synthesis of a single-cluster Laplacian PAS in a test

zone under several frequencies and chamber configurations. This investigation serves as a first step to identifying

the performance capabilities and limitations of a small anechoic chamber in terms of test zone size, chamber size,

number of probes, and frequency range. In general, frequencies of 700 MHz and 2.0 GHz, Laplacian distributions

with standard deviations of 25 and 35 degrees, and a test zone radius of 10cm have been shown to produce or

nearly produce a sufficiently low reflectivity figure in the test zone. Further study of probe number and chamber

dimensions may expand the capabilities of the chamber, and will be performed in future work.

The use of actual horn antennas rather than ideal Hertzian dipole antennas in HFSS is an important next step in

future work. This will investigate the impact of non-ideal effects such as coupling and reflections between antennas

that will lower the performance of the system.

One final area requiring further study is the determination of complex antenna weights from actual field mea-
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Verifying Laplacian Field 
17 

Source: “Calibration Procedure for 2-D MIMO Over-The-Air Multi-Probe Test System”, by D. Parveg et al 
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